

STAKEHOLDER ENGAGEMENT MEETING Electric Vehicle Charger Placement Optimization in Michigan

June 26, 2018 1:30-3:00 PM

Agenda

- Welcome
- Opening Remarks (Michigan Energy Office)
- MSU Project Team Presentation
- Discussion
- Questions

Electric Vehicle Charger Placement Optimization Project

Dr. Mehrnaz Ghamami Dr. Ali Zockaie Dr. Steven Miller

June 26, 2018

Acknowledgement

This study is commissioned and funded by the Michigan Energy Office.

Problem Statement

- Find the optimal infrastructure investment to support electric vehicle travel:
 - Where to deploy charging stations?
 - How many charging outlets must be built at each station?
- The modeling framework considers:
 - EV trip feasibility
 - Minimizing charging station investment cost
 - Minimizing travelers delay including:
 - Charging time
 - Queuing delay time
 - Detour time
 - The results presented here do not include tourism and seasonal variation results. Those are the next steps of this study.

System Operational Assumptions

Battery size: 100 kWh (Average of all EVs in the market)

Confident range = 0.8 ¹ (Travelers would recharge when the battery is

depleted 80% of its capacity.)

Charging efficiency = 1.3^{1} (Converting energy/power ratio to charging time

accounts for waste of energy while charging)

Reduced battery (Reduced battery capacity in Winter temperatures)

Performance = 70%²

Battery charging limit = 0.8^{1} (Users charge their vehicle up to 80 percent of its capacity as charging speed decreases significantly after this point)

Charger power = 50 kW³ (Current average power in fast charging facilities)

Value of time = $$18/h^{-1}$ (Based on users' willingness to pay)

Total demand = 2,979,998 ⁴ (Number of intercity trips between major cities in the state of Michigan (per day))

Major city: Any city which has a population more than 50,000.

¹Source: Ghamami, M., Zockaie, A., & Nie, Y. M. (2016). A general corridor model for designing plug-in electric vehicle charging infrastructure to support intercity travel. Transportation Research Part C, 68, 389-402

ttps://www.energy.gov/eere/electricvehicles/maximizing-electric-cars-range-extreme-temperatures

Source: Michiaan Department of Transportation origin-destination travel data .

System Operational Assumptions

- Market share of electric vehicles
 - Currently assuming 3% and 6% growth for 2030
 - Should we test 2020, 2025 and 2030?
- Battery type
 - Currently 100kwh with 2.5 mile/kwh
 - Does this sound reasonable?
- Battery performance in Summer and Winter
 - Currently 70% capacity in winter
 - Does this sound reasonable? Is the capacity affected by A/C during Summer?
- Charging stations
 - Currently charging efficiency is assumed to be 1.3 and charging powers of 50kw and 150kw are being tested
 - Are there any other factors that should be considered for charging performance?

Reference Road Network

- A sketch road network for the state of Michigan.
- Major cities and interstate highways

Scenario 1: Rapid market growth

Assumptions

EV market share: 6%

EV trips: 178,784 (per day)

Results

Mille

- Number of Stations = 35
- Number of Chargers = 870
- Electricity provision cost= \$3,793,695
- Land acquisition cost= \$1,640,956
- Cost of chargers= \$21,750,000
- Total cost= \$27,184,651
- Total locational

revenues= \$609.12M

Crystal Falls

Scenario 2: Slow market growth

Assumptions

EV market share: 3%

EV trips: 89,392(per day)

Results

- Number of Stations= 34
- Number of Chargers = 434
- Electricity provision cost= \$3,622,025
- Land acquisition cost= \$816,923
- Cost of chargers = \$10,850,000
- Total cost= \$15,288,947
- Total locational

revenues= \$306.75M

Thank you!

Mehrnaz Ghamami

Email: ghamamim@egr.msu.edu

Phone: (517) 355-1288

Ali Zockaie

Email: zockaiea@egr.msu.edu

Phone: (517) 355-8422

Steven Miller

Email: mill1707@anr.msu.edu

Phone: (517) 355-2153

